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Vision 

Vision is the most studied sense. It is our richest source of information about the external 
world, providing us with knowledge of the shape, size, distance, colour and luminosity of 
objects around us. Vision is fast, automatic and achieved without conscious effort; however, 
the apparent ease with which we see is deceptive. Ever since Kepler characterized the 
formation of the retinal image in the early seventeenth century, vision theorists have known 
that the image on the retina does not correspond in an obvious manner to the way things 
look. The retinal image is two-dimensional, yet we see three dimensions; the size and shape 
of the image that an object casts on the retina varies with the distance and perspective of the 
observer, yet we experience objects as having constant size and shape. The primary task of 
a theory of vision is to explain how useful information about the external world is recovered 
from the changing retinal image. 

Theories of vision fall roughly into two classes. Indirect theories characterize the processes 
underlying visual perception in psychological terms, as, for example, inference from prior data 
or construction of complex percepts from basic sensory components. Direct theories tend to 
stress the richness of the information available in the retinal image, but, more importantly, 
they deny that visual processes can be given any correct psychological or mental 
characterization. Direct theorists, while not denying that the processing underlying vision may 
be very complex, claim that the complexity is to be explicated merely by reference to non-
psychological, neural processes implemented in the brain. 

The most influential recent work in vision treats it as an information-processing task, hence as 
indirect. Many computational models characterize visual processing as the production and 
decoding of a series of increasingly useful internal representations of the distal scene. These 
operations are described in computational accounts by precise algorithms. Computer 
implementations of possible strategies employed by the visual system contribute to our 
understanding of the problems inherent in complex visual tasks such as edge detection or 
shape recognition, and make possible the rigorous testing of proposed solutions. 

1 Historical background 

Theorists of vision have proposed various accounts of the nature of the processing 
responsible for our perception of size, shape and distance. Geometric models, popular 
among optic theorists in the seventeenth century, and suggested in some of René Descartes’ 
work on vision (particularly, his Sixth Set of Replies 1641: §9), construe visual processing as 
a species of mathematical calculation (see Molyneux problem). Geometric models can 
therefore be seen as precursors of modern-day computational models of vision (see §§4–8 
below). According to one geometric model, the visual system computes the distance of an 
object in the visual field from the angles at which the light from the object strikes each eye, 
and the distance between the two eyes. Some of the knowledge required for the calculation, 
including knowledge of the relevant mathematical theorems, was thought to be provided by 
innate mechanisms, rather than acquired from experience (see Innate knowledge). A 
significant defect of geometric models is that they failed to provide an account of how the 
requisite knowledge is made available to the visual system (including, for this calculation, the 
distance between the eyes, which is not itself perceived, and which changes as the subject 
grows) or how it is deployed in calculations that were presumed to be unconscious. 



The philosopher George Berkeley, in his influential ‘Essay Towards a New Theory of Vision’ 
(1709), questioned the psychological reality of the geometric models, arguing in effect that the 
information upon which the postulated calculations are based is not available to the visual 
system. Berkeley agreed with the geometric theorists that retinal information alone is 
insufficient to account for our perception of distance and size, but, consistent with his more 
general empiricism, he claimed that the process by which we acquire such knowledge is not a 
species of calculation based on innately specified information, but rather associative and 
learned. 

According to Berkeley, our ideas of distance and size, unlike our ideas of colour, are not 
really visual ideas at all. Whereas light reflected at different wavelengths affects the retina 
differentially, and so (the special case of metamers aside) gives rise to different colour 
sensations, light reflected from different distances does not. There is no characteristic retinal 
pattern associated with something’s being 10 feet away. As Berkeley put it in his famous ‘one 
point’ argument, ‘distance being a line directed end-wise to the eye it projects only one point 
in the fund of the eye, which point remains invariably the same whether the distance is larger 
or shorter’ (1709: §2). Similarly for size: there is no characteristic retinal pattern produced by 
our looking at an object that is 6 cubic feet in volume. A larger object placed at a greater 
distance along the line of sight will have the same geometric effect on the retina. Our ideas of 
distance and size, Berkeley concluded, derive not from visual experience, but from touch and 
movement, from the time and effort it takes to make contact with objects, and from the way 
they feel in our hands. We can tell the distance and size of objects by sight only because we 
learn to associate visual cues, including sensations caused by the convergence of the eyes 
and the accommodation of the lens, with ideas originally derived from our tactual sense. 

Central to Berkeley’s account of distance and size perception is the empiricist doctrine that 
there are no meaningful abstract ideas, that is, ideas not reducible to sensation (see 
Empiricism; Sense-data). He rejected the possibility that we might possess abstract spatial 
ideas that are shared by visual and tactual experience (see Molyneux problem). Later 
theorists of vision who do not share Berkeley’s epistemological and metaphysical 
assumptions have found his claim that our ideas of distance and size are derived from our 
sense of touch uncompelling, and recent work on object perception in infants has 
independently undermined this claim.  Nonetheless, Berkeley’s discussion of the phenomena 
to be explained by a theory of vision shaped the field well into the twentieth century. 

2 Direct v. indirect perception 
The claim that visual perception is not direct or immediate involves more than the truism that 
some processing of the retinal image is necessary to account for what we see. Ideas or 
perceptions are thought not to be ‘direct’ if they are produced by psychological processes. 
While the notion of a psychological process admits of no precise definition, examples come 
readily to mind. Any process that occurs in consciousness, such as the association of ideas, 
is a psychological process, as is any process that involves learning. Mathematical calculation 
of distance and size based on the prior representation of lines and angles, whether 
accessible to consciousness or not, is a psychological process (see Intentionality). Since 
Berkeley’s theory and the models of the geometric writers both posit psychological 
processing of the image (albeit of different sorts), they are considered indirect theories of 
vision. 

The difference between direct and indirect accounts of perception is sometimes characterized 
as a disagreement over the richness of the stimulus, with direct theorists typically arguing that 
the stimulus contains more information than indirect theorists have been willing to allow. For 
example, James J. Gibson (1904–79), a prominent direct theorist, claimed that the input to 



the visual system is not a series of static ‘time slices’ of the retinal image, but rather, the 
smooth transformations of the optic array as the subject moves about its environment (what 
Gibson (1979) called ‘retinal flow’). But to characterize the fundamental difference between 
direct and indirect theories as a disagreement over the richness of the stimulus is to misplace 
the dispute. The issue that separates the two camps concerns neither the amount of 
information contained in the stimulus, nor even the precise character of this information, but, 
rather, how the information in the stimulus is accessed and used by the visual system to 
produce knowledge that is useful to the organism. In other words, it concerns the character of 
the intervening processes. Direct theorists deny that visual processes can be characterized in 
terms of ideas, beliefs, representations, knowledge or memories. In other words, they deny 
that visual processes have any true psychological description. A direct theory explicates any 
intervening or supplementary processing that occurs in perception in terms of neural 
structures and processes directly implemented in the brain. Indirect theorists, of course, do 
not deny that perceptual processes are implemented in neural structures, but they argue that 
such processes should be characterized at a distinct, psychological, level of description. 

Direct theories of perception are sometimes explicitly contrasted with accounts that treat 
perception as a species of inference, akin to the drawing of a conclusion from premises 
according to a principle or rule. The nineteenth-century German physicist and physiologist 
Hermann von Helmholtz argued that the processes underlying visual perception are of the 
same general sort as inductive generalization employed in scientific reasoning (see Inductive 
inference; Inference to the best explanation). We will consider below a contemporary 
approach modeled on Helmholt’s idea. The perceptual psychologist Irvin Rock (1983) 
advanced a view that explicitly treats much of perception as a process of hypothesis 
generation and testing. But the use of ‘inferential’ as a blanket term to refer to indirect 
theories of perception is somewhat misleading. The various processes that can be thought of 
as psychological (for example, conscious inference, unconscious calculation, habit-based 
association, and so on) seem too heterogeneous a collection to justify characterizing the 
entire class in terms of the drawing of conclusions from antecedently established premises. 

3 Direct theories of vision 
The ‘Gestalt’ movement of the early twentieth century rejected the view, prevalent since 
Berkeley, that complex percepts can be analysed into simple sensory components (see 
Gestalt psychology). According to the Gestalt theorists, perception is holistic: perceptual 
wholes are not built up out of more basic sensory elements, in the way, for example, that a 
painting is just the combination of all the paint-covered segments of the canvas. Gestalt 
theorists claimed further that perception is direct – perceptual processing is not correctly 
described in terms of psychological or mental processes. The structure of a visual experience 
is to be explicated in terms of the structure of the underlying brain states, that is, in 
neurophysiological terms. The Gestalt psychologist Wolfgang Köhler characterized as a 
physical gestalt any dynamic system that settles into an equilibrium state of minimal energy. 
A soap bubble forming a perfect sphere is an example of a physical gestalt, as is, Köhler 
argued, the brain producing an organized percept. Köhler proposed a theory that appealed to 
electrical fields within the brain to account for perception (and all other mental processes). 
Gestalt speculative physiology was not borne out by subsequent brain research, which failed 
to discover evidence of Gestalt mechanisms implicated in perceptual processing.  That said, 
however, work by Gestalt theorists to characterize perception in terms of very general 
organizational principles (such as proximity, the idea that nearby elements in the image tend 
to be grouped together, or similarity, the idea that visually similar elements in the image tend 
to be grouped together) has proved useful in motivating the search for computational 
mechanisms that realize and explain these principles.   



The psychologist James J. Gibson shared with the Gestalt theorists the belief that visual 
perception is not mediated by processes characterizable in psychological terms. Gibson 
argued that indirect theorists have mischaracterized the information in the optical array. If the 
effective stimulus for the visual system is taken to be retinal flow (the smooth transformations 
of the optic array as we move about), then, according to Gibson, there are important 
constancies in the stimulus that indirect theorists have typically missed. There is therefore no 
need to posit inferences, calculations, memories, association of ideas, or any other 
intervening psychological process, to explain our perception of size and shape constancy. In 
addition to brightness and colour, properties directly picked up in the stimulus include, 
according to Gibson, higher-order properties that remain invariant through movement and 
changes in orientation. These higher-order invariants specify not only structural properties 
such as ‘being a cube’, but also what Gibson called ‘affordances’, which are functionally 
significant aspects of the distal scene, like the fact that an object is edible or could be used for 
cutting. 

Two fundamental assumptions underlie Gibson’s ‘ecological optics’: (1) that functionally 
significant aspects of the environment structure the ambient light in characteristic ways; and 
(2) that the organism’s visual system has evolved to detect these characteristic structures in 
the light. Both assumptions are controversial. With respect to (2), indirect theorists have 
complained that Gibson provides no account of the mechanism that allegedly detects salient 
higher-order invariants in the optical array. His claim that the visual system ‘resonates’, like a 
tuning fork, to these properties is little more than a metaphor. But it should be noted that in 
claiming that perception of higher-order invariants is direct, Gibson is simply advocating that 
the mechanism be treated as a black box, from the point of view of psychology, because no 
inferences, calculations, memories or beliefs mediate the processing. (The physiological 
account of the mechanism’s operation will no doubt be very complex.) This claim might be 
plausible if assumption (1) is true – if there is a physically specifiable property of the light 
corresponding to every affordance. But for all but the simplest organisms it seems unlikely 
that the light is structured in accordance with the organism’s goals and purposes. More likely, 
the things that appear to afford eating or cutting or fleeing behaviour structure the light in all 
kinds of different ways. This likelihood has led indirect theorists to claim that something like 
categorization – specifically, the bringing of an object identified initially by its shape, colour or 
texture under a further concept – is at work when an organism sees an object as food, as a 
cutting implement, or as a predator. 

4 Computational models of vision: general approach 
The predominant theoretical approach in cognitive psychology in recent years has been 
computationalism, which treats human cognitive processes, including perceptual processes, 
as a species of information processing (see Mind, computational theories of). Computational 
theories of vision attempt to specify the aspects of the external world that are represented by 
the visual system, and to characterize the operations that derive these representations from 
the information contained in the retinal image. 

One of the most prominent early computational vision theorists was David Marr (1945–80), a 
researcher in the Artificial Intelligence Laboratory at the Massachusetts Institute of 
Technology. While the details of Marr’s specific computational model have been challenged 
by later theorists, his work is of continuing interest to philosophers and psychologists 
concerned with the foundations of the computational approach to vision.  Accordingly, I will 
use Marr’s theory to highlight significant features of the computational approach. 

Marr argued in his book Vision (1982) that an information-processing capacity can be 
analysed at three distinct levels of description. The ‘theory of the computation’ is a precise 



specification of the function computed by the mechanism, in other words, what the 
mechanism does. For example, the theory of the computation for a particular device may tell 
us that it adds numbers, or computes averages when given a list of numbers as input. The 
algorithm specifies the procedure or rule for computing the function, and the implementation 
level describes how the computation is carried out in neural or computer hardware. The first 
two levels in the hierarchy – the abstract characterization of the problem and the rule for its 
solution – exemplify a fundamental commitment of the computational approach: that cognitive 
processes can be understood in a way that is independent of the particular mechanisms that 
implement them in the brain. 

Computational models treat the visual system as computing from the retinal image a 
representation of the three-dimensional structure of the distal scene. Marr’s theory divides 
this process into three distinct stages, positing at each stage the construction of a 
representation that makes explicit (some of) the information contained in the image and 
represents it in a way that is efficient for later use. Various computational processes, some 
running in parallel, are defined over these representations. The algorithmic level of 
description characterizes the procedures the visual system uses to produce increasingly more 
useful representations of the scene. 

Most of the processes that Marr describes are data driven, or ‘bottom up’ – they operate on 
information contained in the image, without supplementation by information or beliefs about 
specific objects and features in the scene. These processes use information about intensity 
changes across the visual field, or the orientation of surfaces, not such facts as that objects of 
a particular shape typically make good cutting implements. Marr advocated ‘squeezing every 
ounce of information out of the image’ before positing the influx of supplementary knowledge. 

Data-driven models of perception have a number of advantages over hypothesis-driven 
models which appeal to high-level knowledge very early in visual processing. Data-driven 
processes are generally faster – the visual system does not have to retrieve the relevant 
piece of specialized knowledge before processing the information in the image – and tend to 
be more reliable. In Marr’s model, the point at which high-level information is available to the 
visual system marks a distinction between early and late vision. Early visual processes are 
said to be ‘cognitively impenetrable’ by the subject’s beliefs about the world (see Modularity 
of mind). As a consequence, they cannot be influenced by learning. 

Marr emphasized the importance of the ‘topmost’ level of description – the theory of the 
computation – in developing accounts of human cognitive capacities. He noted that there is 
no point attempting to describe how a mechanism works before knowing what it does. A 
crucial first step in constructing a theory of a perceptual capacity is discovering very general 
constraints on the way the world is structured that enable adapted organisms to solve 
perceptual problems in their normal environments. An example should make the point clear. 
Marr’s student and colleague Shimon Ullman (1979) proved that three distinct orthographic 
views of four non-coplanar points are sufficient to determine the three-dimensional structure 
of a rigid body (the ‘structure from motion’ theorem). If a body is not rigid, much more 
information is required to compute its shape. In a world such as ours, where most things are 
relatively rigid, a visual system built (that is, adapted) to assume that the objects in its 
environment are rigid would be able to compute the structure of those objects more easily 
and quickly than a visual system that had to consider the many non-rigid interpretations 
consistent with the data. Accordingly, Marr posited a mechanism that given three views of 
four non-coplanar points as input computes the unique rigid interpretation consistent with the 
data. 



Recall Berkeley’s objection to the geometric theorists’ accounts of size and distance 
perception. He claimed that the information required for the postulated calculations was not 
generally available to the visual system, nor to the organism. Such a criticism, if true, is 
devastating for a computational account of a cognitive capacity. Any computational theory 
that posits processing beyond the computing capabilities of the mechanism, or that relies on 
information unavailable to the mechanism, is a non-starter as a biological model. An 
important lesson of Marr’s work is that the theorist must attend to the general structure of the 
organism’s environment before attempting to characterize computational mechanisms, 
because the environment determines the nature of the computational problems that the 
organism’s visual system needs to solve. The perceptual systems of adapted organisms can 
be assumed to ‘exploit’ very general information about the environment. Consequently, the 
problems they have to solve may be simpler and computationally more tractable than might 
initially be assumed. 

The work by Gestalt theorists to characterize perception in terms of general organizational 
principles, mentioned above, can be seen as the articulation of general environmental 
constraints and hence as contributing to the specification of theory at the top-most level in 
Marr’s hierarchy.  These principles are justified by reference to very general features of the 
environment.  For example, proximity, the idea that nearby elements tend to be grouped 
together, reflects the fact that objects are cohesive.  

5 Computational models of vision: modularity 
Another characteristic feature of Marr’s theory is that it treats the visual system as comprising 
a number of individual components or modules that can be analysed independently of the rest 
of the system. A ‘module’ is, by definition, cognitively impenetrable: its operation is not 
influenced by information external to it that may be available to the cognitive system as a 
whole, for example, information in the system’s memory (see Modularity of mind). Marr 
posited a module responsible for computing three-dimensional structure from apparent 
motion, another for computing depth from disparity information available in stereo images, a 
third for computing shape from shading. Each of these modules is designed to exploit general 
environmental constraints in the manner that the ‘structure from motion’ module, described 
above, incorporates the rigidity assumption. 

The various modules operate in parallel, and since they yield information about the depth of 
the distal scene from different input data, they may give inconsistent results. This is an 
advantage for the organism, because in cases where the general environmental constraints 
assumed by a processing module do not hold, the output of the module is subject to 
correction by another module operating on different data, and exploiting different 
environmental constraints. For example, imagine a non-rigid mass of jelly moving through 
space. Since the ‘structure from motion’ module is built to assume rigidity it will probably give 
an incorrect interpretation of the jelly’s structure. But its output is then likely to be inconsistent 
with, and correctable by, the output of modules operating on shading or disparity information, 
which, though they exploit other environmental constraints, do not assume rigidity. 

The principle of modular design has an evolutionary rationale. Modular processes are 
typically fast, because a time-consuming search of general memory is avoided. And 
assuming that the constraints governing a module’s operation are generally true, the process 
will normally be reliable. Commitment to the principle of modular design makes the 
computational theorist’s job easier, since modular processes can be studied and modeled 
without the theorist knowing how more central reasoning systems work. For all their 
theoretical advantages, however, modules do pose a general problem. The theorist has to 
explain how the outputs of various modular processes are combined in a single 



representation of the structure of the scene. The possibility of inconsistent results from 
different modules suggests that this is a non-trivial problem.   

In general, then, the visual processes posited in Marr’s theory have three important features. 
They are data-driven, adapted to exploit general environmental constraints, and modular. The 
visual system, according to Marr, computes a series of intermediate representations of distal 
information, culminating in a representation of the three-dimensional structure of the scene. 
The input to the system is the image on the retina, in effect, a grey-level intensity array. The 
initial processing of the image produces what Marr called the ‘primal sketch’, a representation 
of the way that light intensities change over the visual field. The primal sketch makes explicit 
precisely the information that is required for subsequent processing. Discontinuities in 
intensity tend to be correlated with significant features of the scene, that is, object boundaries, 
although it is too early at this stage to assume that all sharp intensity changes in the image 
indicate edges in the world. Some may be produced by changes in illumination or surface 
reflectance (see Colour and qualia). 

The various processing modules described above operate on aspects of the information 
contained in the primal sketch. The results are encoded in a representation that Marr called 
the ‘2.5-dimensional sketch’. It makes explicit the depth and surface orientation of the scene, 
and is the input representation for later visual processing. The visual system is assumed to be 
cognitively impenetrable up to the production of the 2.5-dimensional sketch, hence its 
operation to this point cannot be influenced by learning. 

6 Computational models of vision: object recognition 
Late or high-level visual processes use the representations of depth and surface orientation 
produced by early vision for tasks such as object recognition, locomotion and visually guided 
manipulation. Marr’s own account of late visual processing is rather sketchy. His concrete 
proposals concern the computational level of description, with little or no detail supplied at the 
algorithmic level. In general, computational models of high-level vision are not as well 
developed as accounts of early visual processes. The difficulty is due in part to the fact that 
later processing is hypothesis- (or goal-) driven, and hence cognitively penetrable. The input 
to these processes is not limited to information contained in the image. Object recognition, for 
example, makes use of specific knowledge about objects in the world. This knowledge is 
usually characterized as a catalogue of object types stored in long-term memory. It is worth 
noting that only at this rather late stage does the visual system do anything like identify what 
Gibson calls ‘affordances’, and in computational accounts such identification is typically 
treated as a process of categorization, in other words, as a psychological process (see 
Concepts §1). 

According to the simplest models, recognizing an object currently in view involves comparing 
it with previously stored views of objects and selecting the one that most resembles it. A 
problem with this approach is that it fails to explain our ability to recognize objects from novel 
views that do not straightforwardly resemble any previously stored views. 

More promising are accounts that treat object recognition as associating with the current view 
of the object a description of the object type, perhaps in addition to previously stored views of 
representative examples. Here again, different approaches are possible. ‘Invariant-property’ 
accounts assume that the set of possible retinal projections of objects typically have higher-
level invariant properties that are preserved across the various transformations that the object 
may undergo. Such proposals face the same problem as Gibson’s account of higher-order 
invariants. For most object types it has proved impossible to find specifiable properties of the 
image that are common to all possible recognizable views. 



The ‘decomposition’ approach to object recognition maintains that objects are identified on 
the basis of prior recognition of their component parts. An assumption of this approach is that 
the relevant part–whole relations are invariant and detectable in all possible views where the 
subject would recognize the object. According to Irving Biederman’s ‘recognition by 
components’ theory (1990), a given view of an object can be represented as an arrangement 
of simple primitive volumes called ‘geons’ (for ‘geometric icons’). Geons can themselves be 
characterized in terms of viewpoint-invariant properties, and, proponents of the theory claim, 
are recognizable even in the presence of visual noise. In general, though, the decomposition 
approach to object recognition has proved to be fairly limited in its application. Many objects 
do not decompose in a natural way into easily characterizable parts; and for many of those 
that do the decomposition is insufficient to specify the object in question. 

A third strategy, known as the ‘alignment’ approach, suggests that the visual system detects 
the presence of transformations between the current view of an object and a stored model, 
and can ‘undo’ the transformation to achieve a correspondence between the two. For 
example, suppose that the current view of the object differs from the model stored in memory 
because the object has undergone a three-dimensional rotation and moved further away from 
the viewer. On the current proposal, the visual system first detects the nature of the 
transformations, and then performs them in reverse on the current view to bring it into 
‘alignment’ with the stored model (assuming that the object is rigid). The main problem for 
this approach, as for the other proposals, is its limited applicability. It is only feasible for a 
small range of possible transformations that an object can undergo (for example, rotation and 
scaling) and then only for a limited range of objects. (Imagine detecting and ‘undoing’ the 
rotation of a crumpled piece of newspaper.) 

‘Mixed’ approaches to object recognition attempt to extend the range of applicability of the 
decomposition and alignment approaches by combining elements of the two, positing 
separate identification systems that operate in parallel. While mixed accounts appear 
promising, they face the additional burden of explaining how the outputs of the two 
recognition systems are combined. 

7 Bayesian models of vision 

Computational models based on Bayesian decision principles are currently very popular.  
This approach follows Helmholtz in treating vision as a species of unconscious inference, in 
particular, as probabilistic inference. Bayesian theories treat the visual system as an ideal 
observer that uses prior knowledge about visual scenes and information in the image to infer 
the most probable interpretation of the image.  

The fundamental idea underlying Bayesian perceptual models is that the posterior probability 
of a possible real world structure S is proportional to the product of the prior probability of S 
(that is, the probability before receiving the stimulus I) and the likelihood (the probability of I 
given S).  Prior probability distributions in typical applications of the Bayesian strategy 
represent knowledge of the regularities governing object shapes, constituent materials, and 
illumination, and likelihood distributions represent knowledge of how images are formed 
through projection on the retina. Some examples of prior knowledge that figure in Bayesian 
models are that solids are more likely to be convex than concave and that the light source is 
above the viewer.  

The Bayesian approach provides a framework for taming the ambiguity and complexity in 
natural images. Perception in the Bayesan framework is explicitly seen as a trade-off between 
image reliability – p(I/S) – and the prior p(S).  The less likely the image is given a structure – 



in other words, the more ambiguous the image – the greater the influence of prior knowledge 
in yielding a non-ambiguous percept.  Some perceptions may be more data-driven, and 
others more knowledge driven. The Bayesian framework provides a schema for explicitly 
comparing the relative contributions of image data and prior knowledge in alternative 
proposals. Perceptual constancies – the fact that the visual system is able to detect a fixed 
structure in successive retinal transformations due to movement, or viewpoint or illuminant 
changes – are modeled in the Bayesian framework as discounting, where the confounding 
variables – motion, or viewpoint, or illuminant – are discounted in the computation by 
integrating them out, or summing over them. 

Bayesian models rely on statistical analysis of natural images and their real-world causes to 
arrive at plausible hypotheses concerning image formation (p(I/S)) and prior knowledge about 
naturally occurring structures (p(S)). Uncovering statistical regularities relating image features 
to object or scene properties has enabled theorists to design systems that group images 
consistent with the natural constraints noted above (such as that nearby edges with similar 
orientations belong to the same contour). Such work has yielded computer vision solutions for 
edge detection, face recognition, interpretation of bodily movement, and provided insight into 
the functional nature of certain kinds of visual illusions.  

The Bayesian framework affords several advantages for the study of human vision.  Perhaps 
most obviously, it provides a convenient and natural framework for studying all aspects of 
perception in a unified manner, by treating perception as a Bayesian decision problem.  
Secondly, Bayesian methods allow the development of quantitative theories at Marr’s 
topmost level, avoiding premature commitment to specific neural mechanisms.  Thirdly, 
Bayesian theories explicitly model uncertainty, and hence are an important tool in 
understanding how the visual system might combine large amounts of objectively ambiguous 
information to arrive at percepts that are rarely ambiguous.  Finally, as noted above, it 
provides an explicit account of the interaction between information in the stimulus and prior 
knowledge of the world.  

Nonetheless, Bayesian visual modeling raises some pressing questions about the 
appropriateness of particular Bayesian models and of the Bayesian approach more generally 
for understanding human vision. One question concerns how the visual system knows the 
relevant priors.  Some priors, or strategies for learning priors, are assumed to be innate, 
encoded in our genes.  For the reasons discussed in §4, the idea of innate knowledge 
available to the visual system is quite plausible for general natural constraints but less so for 
specific knowledge concerning visible properties (shapes, textures, etc.) of specific objects. 
For those priors which are not plausibly innate, the question is whether the visual system can 
learn the relevant probability distributions p(S) and p(I/S) from the available data. There are 
further issues concerning priors. It is likely that some probability distributions will be context 
sensitive; compare, for example, a forest with a city scene. It is conceivable (in fact, likely) 
that more than one prior will be applicable in a given context.  What does system do when 
priors are inconsistent?  How are priors updated when the environment changes?  These 
questions suggest directions for further research.  

Another issue concerns the idealization inherent in the Bayesian framework itself.  As 
mentioned above, this has certain advantages, notably, generality and simplicity.  But 
because human vision is limited not just by the partial nature of the information available – a 
feature nicely modeled in the Bayesian framework – but also by the available neural 
hardware, we might expect significant departures from optimality.  The assumption of logical 
omniscience central to Bayesian epistemology – that degrees of belief satisfy the probability 



laws – is an issue for Bayesian perceptual theories as well. Is it reasonable to assume that 
the visual system knows the probability calculus and operates according to it?       

8 Computational models of vision: problems and prospects 
The most common criticism of computational models of human cognitive capacities, including 
accounts of our perceptual abilities, is that they are unable to approximate actual human 
performance. It is true that many impressive computer models fail miserably in the real world. 
Sometimes they fail because the information required is not available to the mechanism. As 
Marr emphasized, the computational theorist can try to avoid this problem by first attempting 
to characterize the computational problems that perceptual mechanisms, in their natural 
context, are required to solve, a process that involves discovering general environmental 
constraints that perceptual mechanisms of adapted organisms can be expected to exploit. 

But the study of biological visual systems faces additional hurdles. Even if the information on 
which a posited process runs is in some abstract sense ‘in the data,’ the input may be too 
‘noisy’ for the mechanism to make use of it. Computational theorists are of course aware of 
this problem. Some of the processing posited by computational accounts, especially in early 
vision, involves the elimination of extraneous or irrelevant information in the image. (For 
example, the primal sketch in Marr’s account, which represents intensity changes in the 
image, does not preserve the absolute values of intensity gradients at every point in the grey-
level array.) Bayesian models, in particular, attempt to isolate and discount confounding 
varlables.  Additionally, the theorist must eventually find neural hardware capable of doing the 
computationally characterized job, before being confident that the model is biologically 
feasible. Given the difficult nature of the task it is unlikely that a complete computational 
account of vision is just around the corner. None the less, computational theorists make an 
important contribution to our understanding of vision by their careful study of the nature of the 
problems to be solved by visual mechanisms, although the solutions they offer are properly 
evaluated by their performance in the real world. 

An alternative style of computational model may ultimately prove better suited to explicating 
human vision than models, such as Marr’s, that treat perceptual processing as rule-governed 
operations defined over representations. In ‘connectionist’ computational architectures 
information is typically represented by patterns of activation over a connected network of units 
or nodes. Connectionist processes are explicated at a level distinct from the neurological or 
implementational. Connectionist cognitive models typically appeal to representations, memory 
and learning, hence they qualify as indirect; although connectionist accounts of 
representation, memory and learning differ in significant respects from more traditional 
computational accounts (see Connectionism). Connectionist theorists have claimed that their 
models are better able to handle noisy input and ‘multiple simultaneous constraints’ 
characteristic of real-world processing situations, though traditional computationalists have 
disputed this claim.  Many Bayesian models lend themselves to implementation in parallel 
networks. Indeed, despite the significant idealization imposed by the Bayesian framework 
itself, Bayesian models may prove more amenable to integration with neurological accounts 
than traditional ‘representationalist’ models such as Marr’s. Some Bayesian models are 
designed specifically to be consistent with known neural mechanisms, with the prior and 
likelihood functions implemented in the model by synaptic weights. Whether the 
‘transparency’ of these models from the neurological perspective proves ultimately to be a 
virtue will depend on whether the empirical predictions the models make possible are borne 
out.     
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